

TS-009
NTAPI Emulated Devices

Abstract: Emulated Devices for Next-Gen High-Level API

Authors: Dan Diolosa (Spirent), Mickael Graham (Cisco), Nana He (Spirent), Todd Law (Spirent), Eric
Miller (Spirent), Calvin Weng (Spirent), Sean Wu (Juniper)

Copyright: © 2015, Network Test Automation Forum. All rights reserved.

Status: Release

Revision: 1

Revision date December 2015

Submission: ntaf ts-009

NTAPI Emulated Devices WT-003009 Revision 051

July 2015 © Network Test Automation Forum. All rights reserved. 2 of 15

Revision History

Version Date By Changes

1 2015-DEC-01 Technical Committee First Release

NTAPI Emulated Devices WT-003009 Revision 051

July 2015 © Network Test Automation Forum. All rights reserved. 3 of 15

Table of Contents

Revision History .. 2

Table of Contents .. 3

Works Cited... 3

1. Motivation ... 3

2. Introduction ... 3

3. Concept .. 4

4. Data Model .. 4

5. URI ... 4

6. Object Definitions ... 5
EmulatedDevice .. 5

7. Actions ... 8

8. Command: emulation_device_config ... 8

9. Examples .. 11
Tcl .. 11
Perl .. 12
Python ... 12
JSON over HTTP ... 12

10. Compliance... 15

Works Cited

NTAF TS-005 Automation API Framework

1. Motivation

The motivation behind this specification is to define emulated devices and associated command(s) as part of the
next-generation high-level API.

2. Introduction

The NTAF TS-005 specification laid down the framework for next-generation APIs at a high-level. TS-005 requires
that NTAF APIs be language-agnostic, operating system agnostic, hardware-environment agnostic. In addition, TS-
005 requires that APIs be object-oriented in nature. This specification provides the next logical step in defining
high-level APIs by defining emulated devices, which are used for protocol emulations in traffic generators.

NTAPI Emulated Devices WT-003009 Revision 051

July 2015 © Network Test Automation Forum. All rights reserved. 4 of 15

3. Concept

Next-generation high-level APIs will be object-oriented in nature. From a command perspective, high-level APIs
reduce the number of commands to a reasonably small, consistent, and manageable set. A similar constraint
applies to the objects defined in the high-level API. In other words, an object-oriented high-level API must define a
reasonably small consistent and manageable set of objects. These objects are, in effect, aggregations of smaller
objects in the data models of the underlying traffic generator.

4. Data Model

This specification follows the data model shown in Figure 1 below. The objects shown in the diagram are related
to each other with parent-child relationships. For example, the “ProtocolCconfig” objects are children of the
“EmulatedDevice” object.

Some objects can be both a parent and a child. For example, the “ProtocolConfig” object is simultaneously a child
of the “EmulatedDevice” object, and a parent of the “ProtocolResults” object. Parent objects may also have
multiple child objects. For example, the “EmulatedDevice” object can have multiple “ProtocolConfig” child objects
under it.

This specification only defines the EmulatedDevice object. Objects to represent ProtocolConfigs and
ProtocolResults are expected to be defined in follow-on specifications.

Figure 1 - NTAF Emulated Devices Data Model

5. URI

The base URI for this NTAPI is defined as:

 The NTAPI name is TS-009

 The NTAPI version is v1

NTAPI Emulated Devices WT-003009 Revision 051

July 2015 © Network Test Automation Forum. All rights reserved. 5 of 15

 The supported objects are:
o EmulatedDevices

The following is the URI for this specification’s collection of devices:

/ntaf/ntapi/TS-009/v1/EmulatedDevices.

The following is the URI to refer to a single device:

/ntaf/ntapi/TS-009/v1/EmulatedDevices/<object handle>.

6. Object Definitions

EmulatedDevice

Attributes
The emulation_device object’s attributes are described in the table below. All of attributes in the table below are
readable/writable, except for “handle” which is automatically generated upon creation.

Name Data
Type/
Format

Description Possible Values Default Value

portHandle string The port handle used for
identification of the port.

Alpha-numeric

handle string The device handle (instance
number), used for
identification.

Alpha-numeric

count integer The number of devices.

encapsulation string The type of Layer 2
encapsulation for the
emulated device.

ethernet_ii (
Ethernet II),
ethernet_ii_qinq
(Ethernet II with
two VLAN tags),
ethernet_ii_vlan
(Ethernet II with a
single VLAN tag)

ethernet_ii

enablePingResponse boolean Enables or disables the
emulated device to respond
to ping.

false (disable) and
true (enable).

false

ipVersion string The IP version of the
emulated device.

ipv4, ipv6 or
ipv46

ipv4

intfIpAddr IPv4 The IPv4 address of the 192.85.1.3

NTAPI Emulated Devices WT-003009 Revision 051

July 2015 © Network Test Automation Forum. All rights reserved. 6 of 15

address emulated device.

intfIpAddrStep IPv4
address

The difference between
IPv4 interface addresses of
consecutive devices when
multiple emulated devices
are created.

 0.0.0.1

gatewayIpAddr IPv4
address

The IPv4 gateway address
for the emulated device.

gatewayIpAddrStep IPv4
address

The difference between
IPv4 gateway addresses of
consecutive devices when
multiple emulated devices
are created.

 0.0.0.1

gatewayIpv6Addr IPv6
address

The IPv6 gateway address
for the emulated device.

gatewayIpv6AddrStep IPv6
address

The difference between
IPv6 gateway addresses of
consecutive devices when
multiple emulated devices
are created.

intfPrefixLen integer The prefix length for the
IPv4 address of the
emulated device.

1 to 32 24

intfIpv6Addr IPv6
address

The IPv6 address of the
emulated device.

intfIpv6AddrStep IPv6
address

The difference between
interface IPv6 addresses of
consecutive devices when
multiple emulated devices
are created.

intfIpv6PrefixLen integer The prefix length for the
IPv6 address of the
emulated device.

0 to 128 64

linkLocalIpv6Addr IPv6
address

The starting link local IPv6
address for emulated
devices.

 FE80::0

linkLocalIpv6AddrStep IPv6
address

The difference between link
local IPv6 addresses of
consecutive devices when
multiple emulated devices

 ::1

NTAPI Emulated Devices WT-003009 Revision 051

July 2015 © Network Test Automation Forum. All rights reserved. 7 of 15

are created.

linkLocalIpv6PrefixLen integer The prefix length for the
link local IPv6 address of
the emulated device.

0 to 128 64

macAddr MAC
address

The MAC address of the
emulated device.

macAddrStep MAC
address

The difference between
MAC addresses of
consecutive devices when
multiple emulated devices
are created.

 00:00:00:00:00:0

1

qinqIncrMode string Determines which VLAN ID
to increment first.

inner (Increments
the inner VLAN ID
before the outer
VLAN ID), outer
(Increments the
outer VLAN ID
before the inner
VLAN ID), both
(Increment both
the inner and
outer VLAN ID at
the same time)

inner

routerId IPv4
address

The router ID of the
emulated device.

routerIdIpv6 IPv6
address

The IPv6 router ID of the
emulated device.

vlanId integer The starting VLAN ID for the
ethernet_ii_vlan
encapsulation or the
ethernet_ii_qinq
encapsulation. This
attribute is available when -
encapsulation is set to
ethernet_ii_qinq or
ethernet_ii_vlan.

0 to 4095 100

vlanIdStep integer The step size by which the
VLAN ID is incremented.

0 to 4095 1

vlanUserPri integer The VLAN user priority
assigned to emulated
device.

0 to 7 0

vlanOuterId integer The starting outer VLAN ID
for the QinQ encapsulation.

0 to 4095 100

NTAPI Emulated Devices WT-003009 Revision 051

July 2015 © Network Test Automation Forum. All rights reserved. 8 of 15

This argument is available
when -encapsulation is set
to ethernet_ii_qinq.

vlanOuterIdStep integer The step size by which the
outer VLAN ID is
incremented.

0 to 4095 1

vlanOuterTpid integer The 16-bit Tag Protocol ID
for outer VLAN tag in hex
format

0x9100, 0x88a8,
0x8100

0x8100

vlanOuterUserPri integer The VLAN priority to assign
to the outer VLAN header.

0 to 7 0

7. Actions

The following actions are supported by the Emulated Devices NTAPI:

 Create – Used to create a new instance of an Object

 Read – Used to retrieve the details (attribute or names) of an existing Object or Objects

 Update – Used to modify an existing instance of an Object

 Delete – Used to remove an existing instance of an Object

The response for Create and Update is the details of the affected Object (including the handle which is used as the
instance identifier in the URI).

There is only a status response for Delete.

8. Command: emulation_device_config

This section introduces the command emulation_device_config, which can be used to create and modify instances
of emulated devices. Since Tcl is currently widely used in existing test automation scripts, the command is defined
below using Tcl syntax. However, since other languages and automation paradigms are growing in popularity, and
to demonstrate language-agnosticity, examples in Perl, Python, and JSON over HTTP are provided in subsequent
sections.

Purpose:
Creates, modifies or deletes emulated devices.

Description:

The emulation_device_config function creates, modifies and deletes one or more emulated devices on the
specified port. Use the -mode argument to specify the action to perform. (See the -mode argument description for
information about the actions.)

NTAPI Emulated Devices WT-003009 Revision 051

July 2015 © Network Test Automation Forum. All rights reserved. 9 of 15

When you create an emulated device, use the -port_handle argument to specify the port that the emulated device
will use (the port handle value is contained in the keyed list returned by the connect function). The create mode
returns the handle of the device.

Use this function when you want to create a device without configuring a protocol. You can enable a protocol on
the created device if you need it later. You can also use the created device as the source or destination handle
when you create a bound stream.

Synopsis:
emulation_device_config

-mode create -port_handle <port_handle> |

-mode {modify|delete} -handle < device_handle>

[-count <integer>]

[-encapsulation {ethernet_ii | ethernet_ii_vlan | ethernet_ii_qinq}]

[-enable_ping_response {1 | 0}]

[-ip_version {4 | 6}]

[-intf_ip_addr <a.b.c.d>]

[-intf_ip_addr_step <a.b.c.d>]

[-gateway_ip_addr <a.b.c.d>]

[-gateway_ip_addr_step <a.b.c.d>]

[-gateway_ipv6_addr <aaaa:bbbb:cccc:dddd:eeee:ffff:gggg:hhhh>]

[-gateway_ipv6_addr_step <aaaa:bbbb:cccc:dddd:eeee:ffff:gggg:hhhh>]

[-intf_prefix_len <1-32>]

[-intf_ipv6_addr <aaaa:bbbb:cccc:dddd:eeee:ffff:gggg:hhhh>]

[-intf_ipv6_addr_step <aaaa:bbbb:cccc:dddd:eeee:ffff:gggg:hhhh>]

[-intf_ipv6_prefix_len <1-128>]

[-link_local_ipv6_addr <aaaa:bbbb:cccc:dddd:eeee:ffff:gggg:hhhh>]

[-link_local_ipv6_addr_step <aaaa:bbbb:cccc:dddd:eeee:ffff:gggg:hhhh>]

[-link_local_ipv6_prefix_len <0-128>]

[-mac_addr <aa:bb:cc:dd:ee:ff>]

[-mac_addr_step <aa:bb:cc:dd:ee:ff>]

[-qinq_incr_mode {inner | outer | both}]

[-router_id <a.b.c.d>]

[-router_id_ipv6 <aaaa:bbbb:cccc:dddd:eeee:ffff:gggg:hhhh>]

[-vlan_id_step <0-4095>]

[-vlan_user_pri <0-7>]

[-vlan_outer_id <0-4095>]

[-vlan_outer_id_step <0-4095>]

[-vlan_outer_tpid {0x8100 | 0x88a8 | 0x9100}]

[-vlan_outer_user_pri <0-7>]

Arguments:
-port_handle

Specifies the port on which to create the emulated device. This handle is returned by the

sth::connect function. It is mandatory for the “create” mode.

-handle

Specifies the device handle. This argument is mandatory for -mode

modify and delete.

-mode

Specifies the action to perform on the test port. This argument is

mandatory. Possible values are:

create - Creates the device on the specified port. You must specify -port_handle.

modify - Modifies the configured device identified by -handle.

delete - Deletes the emulated device identified by -handle.

-count

Specifies the number of emulated devices to be created. The default value is 1.

-encapsulation

Specifies the type of Layer 2 encapsulation for the emulated device. Possible values are:

ethernet_ii - Ethernet II

ethernet_ii_vlan - Ethernet II with a single VLAN tag

ethernet_ii_qinq - Ethernet II with two VLAN tags

The default value is ethernet_ii.

NTAPI Emulated Devices WT-003009 Revision 051

July 2015 © Network Test Automation Forum. All rights reserved. 10 of 15

-enable_ping_response

Enables or disables the emulated device to respond to ping. Possible values are 0

(disable) and 1 (enable). The default is 0.

-ip_version

Defines the IP version of the emulated device. Possible values are ipv4, ipv6 and ipv46.

The default value is ipv4.

-intf_ip_addr

Specifies the IPv4 address of the emulated device. The default value is 192.85.1.3.

-intf_ip_addr_step

Specifies the difference between IPv4 interface addresses of consecutive devices when

multiple emulated devices are created. The value must be in IPv4 format. The default is

0.0.0.1.

-gateway_ip_addr

Specifies the IPv4 gateway address for the emulated device.

-gateway_ip_addr_step

Specifies the difference between IPv4 gateway addresses of consecutive devices when

multiple emulated devices are created.

The default value is 0.0.0.1.

-intf_prefix_len

Specifies the prefix length for the IPv6 address of the emulated device. Possible values

range from 1 to 32. The default is 24.

-intf_ipv6_addr

Specifies the IPv6 address of the emulated device.

-intf_ipv6_addr_step

Specifies the difference between interface IPv6 addresses of consecutive devices when

multiple emulated devices are created.

-intf_ipv6_prefix_len

Specifies the prefix length for the IPv6 address of the emulated device. Possible values

range from 0 to 128. The default is 64.

-gateway_ipv6_addr

Specifies the IPv6 gateway address for the emulated device.

-gateway_ipv6_addr_step

Specifies the difference between IPv6 gateway addresses of consecutive devices when

multiple emulated devices are created.

-link_local_ipv6_addr

Specifies the starting link local IPv6 address for emulated devices. The value must be in

IPv6 format. The default is FE80::0.

-link_local_ipv6_addr_step

Specifies the difference between link local IPv6 addresses of consecutive devices when

multiple emulated devices are created. The value must be in IPv6 format. The default is

::1.

-link_local_ipv6_prefix_len

Specifies the prefix length for the link local IPv6 address of the emulated device.

Possible values range from 0 to 128. The default is 64.

-mac_addr

Specifies the MAC address of the emulated device.

-mac_addr_step

Specifies the difference between MAC addresses of consecutive devices when multiple

emulated devices are created.

-qinq_incr_mode

Determines which VLAN ID to increment first. Possible values are:

inner - Increments the inner VLAN ID before the outer VLAN ID

outer - Increments the outer VLAN ID before the inner VLAN ID

both - Increment both the inner and outer VLAN ID at the same time

NTAPI Emulated Devices WT-003009 Revision 051

July 2015 © Network Test Automation Forum. All rights reserved. 11 of 15

The default value is inner.

-router_id

Specifies the router ID of the emulated device. The value must be in IPv4 format.

-router_id_ipv6

Specifies the IPv6 router ID of the emulated device. The value must be in IPv6 format.

-vlan_id

Specifies the starting VLAN ID for the ethernet_ii_vlan encapsulation or the

ethernet_ii_qinq encapsulation. Possible values range from 0 to 4095. The default value

is 100. This argument is available when -encapsulation is set to ethernet_ii_qinq or

ethernet_ii_vlan.

-vlan_id_step

Specifies the step size by which the VLAN ID is incremented. Possible values range from 0

to 4095. The default value is 1.

-vlan_user_pri

Specifies the VLAN user priority assigned to emulated device. Possible values range from

0 to 7. The default value is 0.

-vlan_outer_id

Specifies the starting outer VLAN ID for the QinQ encapsulation. Possible values range

from 0 to 4095. The default value is 100. This argument is available when -encapsulation

is set to

ethernet_ii_qinq.

-vlan_outer_id_step

Specifies the step size by which the outer VLAN ID is incremented. Possible values range

from 0 to 4095. The default

value is 1.

-vlan_outer_tpid

Specifies the Tag Protocol ID (TPID) for the outer VLAN header. Possible values are

0x8100, 0x88a8 and 0x9100. The default value is 0x8100.

-vlan_outer_user_pri

Specifies the VLAN priority to assign to the outer VLAN header. Possible values range

from 0 to 7. The default value is 0.

Return Values:
Depending on the specific language used, the function returns a keyed list/dictionary/hash using the following keys
(with corresponding data):

status $SUCCESS (1) or $FAILURE (0)

log Error message if command returns {status 0}

handle The device handle

9. Examples

The following examples create an emulated device:

Tcl

set device_ret1 [ntapi::emulation_device_config\

-mode create\

-port_handle $port1 \

-ip_version ipv4 \

]

Sample Output:

NTAPI Emulated Devices WT-003009 Revision 051

July 2015 © Network Test Automation Forum. All rights reserved. 12 of 15

{handle device1} {status 1}

Perl
my $device_ret1 = ntapi->ntapi::emulation_device_config (

 mode => "config",

 port_handle => $hport[2],

 ip_version => "ipv4");

Sample Output (hash):

‘status’ => ‘1’
‘handle’ => ‘emulateddevice1’

Python
device_ret1 = ntapi.emulation_device_config(mode = 'config',

port_handle = port1[0], ip_version = 'ipv4')

Sample Output (Python dictionary):

{‘status’: ‘1’, ‘handle’: ‘emulateddevice1’}

JSON over HTTP

Request (Create)

POST /ntaf/ntapi/TS-009/v1/EmulatedDevices HTTP/1.1

Content-Length: 79

Content-Type: application/json

{

 "count": 2,

 "ipVersion": "ipv4",

 "macAddr": "aa:bb:cc:00:11:00"

}

Response

HTTP/1.1 200 OK

Content-Length: 468

Content-Type: application/json

{

 "handle": "3232",

 "count": 2,

 "encapsulation": "ethernet_ii",

 "enablePingResponse": false,

 "ipVersion": "ipv4",

 "intfIpAddr": "192.85.1.3",

 "intfIpAddrStep": "0.0.0.1",

 "intfPrefixLen": 24,

 "macAddr": "aa:bb:cc:00:11:00",

 "macAddrStep": "00:00:00:00:00:01,

 "qinqIncrMode": "inner",

 "vlanId": 100,

 "vlanIdStep": 1,

 "vlanUserPri": 0,

 "vlanOuterId": 100,

 "vlanOuterIdStep": 1,

 "vlanOuterUserPri": 0

}

NTAPI Emulated Devices WT-003009 Revision 051

July 2015 © Network Test Automation Forum. All rights reserved. 13 of 15

Request (Update)

PUT /ntaf/ntapi/TS-009/v1/EmulatedDevices/3232 HTTP/1.1

Content-Length: 429

Content-Type: application/json

{

 "count": 20,

 "encapsulation": "ethernet_ii",

 "enablePingResponse": false,

 "ipVersion": "ipv4",

 "intfIpAddr": "192.85.1.3",

 "intfIpAddrStep": "0.0.0.1",

 "intfPrefixLen": 24,

 "macAddr": "aa:bb:cc:00:11:00",

 "macAddrStep": "00:00:00:00:00:01,

 "qinqIncrMode": "inner",

 "vlanId": 100,

 "vlanIdStep": 1,

 "vlanUserPri": 0,

 "vlanOuterId": 100,

 "vlanOuterIdStep": 1,

 "vlanOuterUserPri": 0

}

Response

HTTP/1.1 200 OK

Content-Length: 469

Content-Type: application/json

{

 "handle": "3232",

 "count": 20,

 "encapsulation": "ethernet_ii",

 "enablePingResponse": false,

 "ipVersion": "ipv4",

 "intfIpAddr": "192.85.1.3",

 "intfIpAddrStep": "0.0.0.1",

 "intfPrefixLen": 24,

 "macAddr": "aa:bb:cc:00:11:00",

 "macAddrStep": "00:00:00:00:00:01,

 "qinqIncrMode": "inner",

 "vlanId": 100,

 "vlanIdStep": 1,

 "vlanUserPri": 0,

 "vlanOuterId": 100,

 "vlanOuterIdStep": 1,

 "vlanOuterUserPri": 0

}

Request (Get)

GET /ntaf/ntapi/TS-009/v1/EmulatedDevices/3232 HTTP/1.1

Response

HTTP/1.1 200 OK

Content-Length: 469

Content-Type: application/json

NTAPI Emulated Devices WT-003009 Revision 051

July 2015 © Network Test Automation Forum. All rights reserved. 14 of 15

{

 "handle": "3232",

 "count": 20,

 "encapsulation": "ethernet_ii",

 "enablePingResponse": false,

 "ipVersion": "ipv4",

 "intfIpAddr": "192.85.1.3",

 "intfIpAddrStep": "0.0.0.1",

 "intfPrefixLen": 24,

 "macAddr": "aa:bb:cc:00:11:00",

 "macAddrStep": "00:00:00:00:00:01,

 "qinqIncrMode": "inner",

 "vlanId": 100,

 "vlanIdStep": 1,

 "vlanUserPri": 0,

 "vlanOuterId": 100,

 "vlanOuterIdStep": 1,

 "vlanOuterUserPri": 0

}

Request (Get All)

GET /ntaf/ntapi/TS-009/v1/EmulatedDevices HTTP/1.1

Response

HTTP/1.1 200 OK

Content-Length: 1059

Content-Type: application/json

[

 {

 "handle": "3232",

 "count": 20,

 "encapsulation": "ethernet_ii",

 "enablePingResponse": false,

 "ipVersion": "ipv4",

 "intfIpAddr": "192.85.1.3",

 "intfIpAddrStep": "0.0.0.1",

 "intfPrefixLen": 24,

 "macAddr": "aa:bb:cc:00:11:00",

 "macAddrStep": "00:00:00:00:00:01,

 "qinqIncrMode": "inner",

 "vlanId": 100,

 "vlanIdStep": 1,

 "vlanUserPri": 0,

 "vlanOuterId": 100,

 "vlanOuterIdStep": 1,

 "vlanOuterUserPri": 0

 },

 {

 "handle": "56554534",

 "count": 1,

 "encapsulation": "ethernet_ii",

 "enablePingResponse": false,

 "ipVersion": "ipv4",

 "intfIpAddr": "192.185.1.3",

 "intfIpAddrStep": "0.0.0.1",

 "intfPrefixLen": 24,

 "macAddr": "cc:bb:cc:00:11:00",

 "macAddrStep": "00:00:00:00:00:01,

 "qinqIncrMode": "inner",

 "vlanId": 100,

 "vlanIdStep": 1,

 "vlanUserPri": 0,

 "vlanOuterId": 100,

NTAPI Emulated Devices WT-003009 Revision 051

July 2015 © Network Test Automation Forum. All rights reserved. 15 of 15

 "vlanOuterIdStep": 1,

 "vlanOuterUserPri": 0

 }

]

Request (Delete)

DELETE /ntaf/ntapi/TS-009/v1/EmulatedDevices/3232 HTTP/1.1

Response

HTTP/1.1 200 OK

10. Compliance

NTAF’s Automation API Framework document (TS-005) section 9, indicates that each NTAPI specification will
outline its own requirements. For this specification, a compliant implementation must abide by all of the following
points:

 Support for the command emulated_device_config for the use cases to create, read, update, and delete
instances of EmulatedDevice objects

 Support for all default values for the attributes listed in section 6 above

 Support for at least one of the following:
o A scripting or programming language, OR
o A REST implementation

 In the case of REST, support JSON over HTTP encoding

 User documentation, where the documentation contains
o List of all supported attributes
o List of attributes which are in the specification, but not supported in the implementation
o List of attributes which are not in the specification, but are supported in the implementation
o Default values for all attributes
o Examples

 If an attribute is implemented, the implementation must use the attribute using the name and meaning
specified in section 6 of this document

Implementations which claim compliance must include a full report of the supported objects, attributes and
associated values.

