

43-ππυ
!ÕÔÏÍÁÔÉÏÎ !0) &ÒÁÍÅ×ÏÒË

Abstract: This extension to NTAF Tool Automation harness describes a framework for defining high
level automation API.

Authors: Mickael Graham, Todd Law, Eric Miller

Copyright: © 2014, Network Test Automation Forum. All rights reserved.

Status: Release

Revision: 1

Revision date August 2014

Submission: ntaf TS-005

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 2 of 38

Legal Notices

This Specification has been created by the Network Test Automation Forum (NTAF). NTAF reserves the rights to at any time add
to, amend, modify or withdraw all or any portion of this Specification.

Note: All parties who in any way intend to use this Speci fication for any purpose, are hereby put on notice that the possibility exists
that practicing under this Specification may require the use of inventions covered by the patent rights held by third parties . By
publication of this Specification NTAF makes no representation or warranty whatsoever, whether expressed or implied, that
practicing under this will not infringe any third party rights, nor does NTAF make any representation or warranty whatsoever ,
whether expressed or implied, with respect to (1) any claim that has been or may be asserted by any third party, (2) the validity of
any patent rights related to any such claim, (3) or the extent to which a license to use any such rights may or may not be available
on reasonable and nondiscriminatory terms, or on any terms at all.

© 2014 Network Test Automation Forum

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise
explain it or assist in its implementation may be prepared, copied, p ublished and distributed, in whole or in part, without restriction
other than the following, (1) the above copyright notice and this paragraph must be included on all such copies and derivativ e
works, and (2) this document itself may not be modified in any way, such as by removing the copyright notice or references to
NTAF.

By downloading, copying, or using this document in any manner, the user acknowledges that it has read, and hereby consents to,
all of the terms and conditions of this notice. Unless the terms and conditions of this notice are breached by the user, the limited
permissions granted above are perpetual and will not be revoked by NTAF or its successors or assigns.

THIS SPECIFICATION AND THE INFORMATION CONTAINED HEREINIS PROVIDED ON AN òAS IS BASIS, AND NTAF
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OF ANY THIRD PARTY, OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, TITLE OR FITNESS FOR A PARTICULAR PURPOSE.

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 3 of 38

Revision History

Version Date By Changes

01 2014-08-27 First release

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 4 of 38

Table of Contents

Revision History .. 3

Table of Contents .. 4

Standard Harnesses ... 5

Works Cited... 6

1. Introduction ... 7
Motivation... 7
Concept ... 7
Architecture ... 8

Conceptual Model ... 8

Intended Usage .. 12

Design Principles .. 13

API Structure .. 13

2. Relationship to Existing NTAF Standards ... 13

3. API versions .. 14

4. Vendor Extensions .. 14

5. NTAPI Naming Conventions .. 14

6. Action Categories ... 15

7. Objects ... 15
EX .. 15
Node .. 16
Port.. 17
Result .. 17

8. Language Independence ... 18
Encoding .. 18
XML .. 19

JSON ... 20

Transport ... 20
NTAF XMPP .. 20

HTTP ... 21

Bindings ... 21

9. Compliance... 22

10. Use Cases ... 22
IPSec .. 22
Overview .. 22

Objective .. 22

Topology .. 22

Object Model ... 23

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 5 of 38

NTAPI Sample Usage .. 23

HNBAP ... 24
Overview .. 24

Objective .. 24

Topology .. 24

Object Model ... 25

NTAPI Sample Usage .. 25

BGP Maximum Neighbors ... 26
Overview .. 26

Objective .. 26

Topology .. 26

Object Model ... 27

NTAPI Sample Usage .. 27

DHCP ... 28
Overview .. 28

Objective .. 28

Topology .. 28

Object Model ... 29

NTAPI Sample Usage .. 30

Fuzzing .. 30
Overview .. 30

Objective .. 30

Topology .. 30

Object Model ... 31

NTAPI Sample Usage .. 32

Traffic Shaping .. 32
Overview .. 32

Objective .. 32

Topology .. 32

Object Model ... 33

NTAPI Sample Usage .. 33

11. NTAPI Specification Requirements .. 34

12. Harnesses ... 34

13. XML schemas .. 38

Standard Harnesses

Harness 1. NTAF High Level API Actions .. 34

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 6 of 38

Works Cited

IEEE. (n.d.). IEEE Standards Association. Retrieved from http://standards.ieee.org/develop/regauth/oui/public.html

International Organization for Standardization. (n.d.). ISO/IEC 9834-8:2005. Retrieved from
http://www.iso.org/iso/catalogue_detail.htm?csnumber=36775

International Telecommunication Union. (n.d.). OSI networking and system aspects ς Naming, Addressing and
Registration. Retrieved from http://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf

Network Test Automation Forum. (2010). NTAF. Retrieved from Ntaforum: http://ntaforum.org

Network Test Automation Forum. (2011, June). TS-001: Tool Registration and Discovery. Retrieved from Ntaforum:
http://ntafo rum.org/resources/request.html

Network Test Automation Forum. (2011, June). TS-002: Tool Automation Harness. Retrieved from Ntaforum:
http://ntaforum.org/resources/request.html

Network Working Group. (n.d.). A Universally Unique IDentifier (UUID) URN Namespace. Retrieved from
http://tools.ietf.org/html/rfc4122

Wikipedia. (n.d.). Organizationally Unique Identifiers. Retrieved from
http://en.wikipedia.org/wiki/Organizationally_unique_identifier

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 7 of 38

1. Introduction

This document describes an NTAF (Network Test Automation Forum, 2010) extension that describes a framework
for defining automation high level APIs. The framework will serve as a guideline for future API development.

Motivation

Over the past 14 years, various attempts have been made at defining higher-level APIs to drive test equipment.
Those earlier attempts did achieve a number of benefits for end users, including:

¶ Consolidated many low-level commands into fewer higher level commands

¶ Provided a consistent interface to users, within one company

¶ Provided some code re-use across projects

¶ Provided minimal multi-vendor support

However, there were also numerous problems associated with such attempts:

¶ No commonality across industry, many implementations

¶ Many vendor-specific extensions

¶ No specification (either non-existent or proprietary)

¶ Only available in one language (Tcl or Perl)

¶ Some implementations had too many commands

¶ Other implementations had fewer commands, but commands had too many arguments

¶ Arguments had unclear or unspecified defaults

¶ Arguments had unclear or unspecified dependencies

¶ Deviating from high-level commands to low-level commands was very difficult

¶ No method for managing dependent software, especially versions

¶ No consideration for various architectures

¶ Frequently no documentation

¶ Performance of implementations sometimes poor

¶ Proliferation of too many versions

¶ Delays in feature support

The ongoing multiple attempts to solve this problem in a piecemeal manner have also created an unsustainable
ecosystem where the many partial solutions draw on a limited resource pool, ultimately resulting in multiple poor
implementations. Automators that rely on such implementations essentially become stuck with a set of test
scripts that cannot easily be modified or extended in various scenarios.

The root cause behind many of the above problems is a lack of a well-written, formal, and open specification that
is available to all parties. This document is an attempt to rectify the situation by providing a framework for such
specifications.

Concept

This document defines the framework for specifying NTAF compliant high level test APIs (NTAPI). These APIs will
cover a large range of scenarios including:

¶ Stream generation

¶ Protocol emulation

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 8 of 38

¶ Packet replay

¶ Use case driven which combines generation, emulation, or replay together

APIs are to be defined in future NTAF documents. Each document will represent a collection of relevant APIs which
is referred to as an NTAPI (NTAF Test API). NTAPIs will be versioned to allow for future extensibility.

Vendor extensions are allowed for both the APIs within an NTAPI and for defining new APIs. This allows for
continued innovation and product differentiation.

Architecture
The high level API is executed by a test client (requestor) which triggers requests (action plus data) being sent to
the test device (provider). The provider acts as the server in the client server architecture with the requestor acting
as the client. The provider processes the request which may include performing a desired action and then
responds with the result. The provider may be implemented in many fashions including as an on board
component of a test device or as an intermediary device, such as a server which relays the commands to a test
device.

Requestors are typically scripts that are developed by automators. The scripts either access a client library that
provides the translation from the native language (e.g. TCL or Perl) into the NTAPI protocol binding or the scripts
directly implement the NTAPI protocol binding. Providers are typically traffic generators and protocol emulators.

The following figure depicts this typical setup.

Figure 1 High Level API Architecture

Multiple systems / devices under test, providers, and requestors may be present in any one deployment. How
these interact is outside of the scope of this document.

Conceptual Model
Conceptually a network is a set of connected nodes, as pictured below. The basic objects represented in the
diagram are nodes and connections between those nodes.

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 9 of 38

Providers seek to test network elements. A single network element (node) can be singled out for testing and is
labeled a Device Under Test (DUT). This is shown below.

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 10 of 38

A group of network elements (nodes) may also be tested. In this case they are labeled a System Under Test (SUT).
This is shown below.

Whether testing a DUT or SUT, the concept is the same. In the ensuing discussion the distinction will be ignored
and the more generic term SUT will be used for both.

A provider is used to simulate networks and their corresponding traffic. First generation tools were known as
traffic generators. Over time high level protocol emulation became available. A provider connects to the SUT
through ports. These ports can send traffic as well as receive traffic (capture). This is shown below.

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 11 of 38

The provider simulates the parts of the network which are needed to test a SUT. The simulated network elements
(nodes) are logically the source and destination of the traffic and communicate with the SUT through the provider
ports, as shown below.

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 12 of 38

The traffic sent and received by providers may include a combination of:

¶ Streams ς generated packets that have a common identifier, typically via a payload signature (stateful or
stateless)

¶ Emulations ς generated packets that represent protocol implementations, typically layer 4 and above

¶ Replays ς previously captured packets that are either directly sent or modified based on the source and
destinations

The traffic received by providers may be captured and filtered based on port, node, stream, and emulation.

Traffic is an overloaded term and is often associated with what is defined above as streams. As such, throughout
this document the term EX (exchanged data) is used to indicate any communicated data whether it is streams or
traffic, emulations, or replays.

Nodes, ports, and EXs (streams, emulations and replays) are basic resources needed by providers and are the main
objects that are managed by the NTAF high level test API.

During test execution, results are generated at multiple levels by the provider. Results come in many forms
including packet captures (at port or node, filtered or otherwise), packet statistics (at port or node, such as number
of packets or bit rate), emulation statistics (e.g. HTTP response times), or emulation outcomes (e.g. BGP advertised
route count).

Intended Usage
There are many areas and levels of abstraction that a test API can cover. These include:

1. Setup and configuration of providers
2. Running tests with node and transmission control.
3. Results gathering and analysis.
4. Setup and configuration of DUTs and SUTs.
5. Execution control logic.

This document will concern itself primarily with items 1-3. While item 4 is important for test scripts, attempting to
bound the wide array of possible DUTs is beyond this framework's scope. Similarly, attempting to define the
control logic of item 5 with the many available scripting and programming languages and so is considered too vast
a task for this document.

Thus this framework covers high level test APIs concerned with the following types of operations.

1. Setup and configuration of providers (i.e. test equipment).
a. Create and configure nodes.
b. Create and configure ports.
c. Create and configure EXs including streams, emulations, or replays.
d. Configure the types of data to be gathered.

2. Running and control.
a. Start and stop the simulation.

3. Results gathering and analysis.
a. Collect results.
b. Reports results to users.
c. Analyze results for pass-fail conditions.

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 13 of 38

The intention is not for the requestor to drive interactive tests with the provider.

Design Principl es
The high level API framework and the resulting API definitions are built using the following principles:

¶ The API allows simple common tasks to be easily performed but makes it possible for the complex tasks to
be completed. It is recognized that users prefer high level APIs however at times require the ability for low
level interactions to complete detailed test cases. Both are supported.

¶ The API follows RESTful semantics including:
o Client server architecture.
o Strict interface definition to allow separation of user and tools.
o Separation of data (e.g. the attributes of the configuration) and the actions (e.g. create, read,

update, delete, control) that operate on the data.

¶ The API is object orientated. The requestor manipulates objects on the provider. This allows reuse across
test sessions.

¶ The API allows for vendor extensions for both the actions and the data.

¶ The API follows defined conventions for naming, behavior, and documentation. This allows a user that is
familiar with one compliant API to be instantly comfortable when a new API is introduced.

¶ The API allows for high performance. It allows for bulk actions to occur (e.g. adding 100 interfaces can be
done in a single action, not 100 separate actions).

¶ The API uses off the shelf technologies.

These principles were selected to support the following goals:

¶ Provide a consistent API experience for users

¶ Allow test reuse from project to project

¶ Allow test reuse between vendors and versions

¶ Enable vendor implementations without excessive deployment effort

¶ Enable vendor innovation and product differentiation

API Structure
The main components of compliant NTAPI APIs are:

¶ Attribute ς key/value pair of data that represents a property of an object (e.g. name)

¶ Object ς instance of class which is a collection of attributes that represent a thing (e.g. node)

¶ Action ς a procedure invoke on an object instance, a collection of objects, or on the provider

The relationships between these components are:

¶ Objects are comprised of attributes

¶ Objects are identified by URIs

¶ Actions manipulate objects and their attributes

¶ Actions control the provider (e.g. test equipment)

¶ Actions return status (code and message) which indicate the success or otherwise of the procedure

¶ Actions may return data (object, list of objects, etc)

2. Relationship to Existing NTAF Standards

While this document covers a new area for NTAF, it leverages the existing NTAF standards. Specifically it uses:

¶ The XMPP transport and harness mechanisms defined in TS-001 and TS-002.

¶ The vendor extension mechanism defined in TS-004.

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 14 of 38

It is expected that future NTAPI specifications will leverage future NTAF work such as the reporting specification.

3. API versions

Test scripts are written at a particular time but are maintained for a considerable time thereafter. This means
scripts are written against a particular API version but maintained across multiple API versions. For this reason
NTAPIs will support the following:

¶ Clear tracking of version changes per NTAPI. The version will be represented as a single integer that is
incremented on each published change. The initial version will be zero (v0).

¶ Version specification when accessing an NTAPI.

4. Vendor Extensions

Vendors will follow the conventions defined in the NTAF TS-004 Inventory specification when extending a
published NTAPI. Simply put, Vendors will prefix each item in question such as the API, object, or attribute
with a name owned by the Vendor. For example, Acme Inc may use the prefix of acme.

5. NTAPI Naming Conventions

The following naming conventions will be used for NTAPI actions, objects, and attributes.

¶ NTAPI names will use lower camel case. For example icmp, eapSim, or webSocket.

¶ Action names will start with a verb and use lower camel case. For example start or resetStatistics.

¶ Object names will be nouns and will use upper camel case. For example DhcpClients.

¶ Object names normally serve to identify collection objects. As such they should be plural unless plural
does not make sense grammatically. Thus DhcpClients is plural but lcmp is not.

¶ Attribute names will start with a noun and will use lower camel case. For example checksumEnabled.

The only exception to the conventions is when a vendor specific prefix is added.

Objects are identified by a unique URI. The NTAPI format is as follows:

/ntaf/ntapi/<NTAPI name>/<NTAPI version>/<object name>[/<object instance>]

Where:

¶ /ntaf/ntapi identifies this is an NTAF compliant NTAPI

¶ <NTAPI name> is the name of the NTAPI per its specification

¶ <NTAPI version> is the NTAPI version prefixed with a v per its specification

¶ <object name> is the name of the target object per its specification

¶ <object instance> is optionally the target instance of the object

For example:

 /ntaf/ntapi/dhcp/ v0/DhcpClients/0

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 15 of 38

Here there is a fictitious NTAPI called dhcp in its first version (v0). It defines an object DhcpClients and the URI is
targeting the 0 instance.

6. Action Categories

Actions are separated into categories, manipulation and control.

Manipulation actions are for the creating, reading, updating, and deleting of the NTAPI objects and attributes.
Depending on the transport used, these actions may be implicit (e.g. HTTP GET is for Reading). The following
manipulation actions will be supported:

¶ Create ς Used to create a new instance of an Object

¶ Read ς Used to retrieve the details (attribute or names) of an existing Object or Objects

¶ Update ς Used to modify an existing instance of an Object

¶ Delete ς Used to remove an existing instance of an Object

Control actions are for controlling the behavior of the provider. Depending on the transport used, these actions
may need to be explicitly included (e.g. HTTP POST with action in the query string). The following are example
control actions:

¶ start ς Used to start a test based on the configured objects and attributes

¶ stop ς Used to stop an in-progress test.

¶ clear ς Used to reset the provider and its counters (e.g. test equipment) back to known state

7. Objects

The following sections describe the key objects used by the high level test APIs. Existing vendor implementations
may have data models that provide functionality above and beyond what is described. For backwards compatibility
and reuse, it is understood that implementers may use the façade design pattern to support concurrent models.

EX

EX represents the data sent and received between the provider and the SUT/DUT. This data is categorized into
streams (or traffic), emulations, and replays. All EX instances may be configured as uni-directional or bi-directional
and will support receiving as well as sending.

Each of these categories will define instances in future NTAPIs. The behavior of the data generated or replayed will
be determined by the options provided by the instances. Streams deserve special mention in that they are
constructed by specifying instances at different layers in the stack. Example instances may include:

¶ Streams ς Ethernet (layer 2), IP (layer 3), and UDP/TCP/SCTP/RTP (layer4)

¶ Emulations ς DHCP, BGP, IGMP, RIP, and HTTP

¶ Replays ς Direct and altered

Multiple instances may be combined together, thus providing support for full simulation.

EXs are associated with nodes and then traverse ports to reach its intended target. It provides the node with its
personality, i.e. EXs define ŀ ƴƻŘŜΩǎ ōŜƘŀǾƛƻǊ ŀƴŘ ǊƻƭŜ ƛƴ ǘƘŜ ǘŜǎǘΦ

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 16 of 38

In a first example, raw generated EX (Ethernet/IP/UDP stream) is used. The payload of the UDP packets share a
common identifier (signature). This is depicted below.

In a second example, the EXs may be a combination of emulation instances. In this example, a DOCSIS modem
going through its boot process is simulated by including DHCP, ToD, and TFTP protocol emulation.

In a third example, previously captured packets are replayed. This is depicted below.

While not depicted in the examples, streams, emulations, and replays may be combined together to provide more
complex network simulation.

Node

Nodes are associated with ports or other nodes. From a network perspective this association may also be
considered a connection. This is shown below.

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 17 of 38

A single port may be connected to multiple ports as depicted below.

The term node was chosen because it is familiar to test authors. It also allows for great flexibility in usage. For
example, a node can represent a single device or it can represent the internet or other massive network structure
for which terms such as "interface" or "device" would be misleading.

Port

Ports objects can be created, configured, and associated with either hardware or virtual port locations. In the
object model the ports are the links from the provider to the DUT/SUT. The functionality that the underlying
hardware or virtual port provides includes the ability to generate and capture communicated data.

Result

Results are split into two parts. Firstly there is the configuration of the results that will be collected during test
execution. Secondly there are actual results that are collected during test execution.

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 18 of 38

The configuration of results is managed via a single object that spans the provider covering the ports, EXs, and
nodes. By default, the NTAPI specifications will define the most commonly used collection settings to improve ease
of use. Additionally, the NTAPI specifications will allow for further output to be collected and returned by
manipulating the results configuration object.

The output of the test execution is returned as a separate object which is created when a simulation is started.
Results output will contain a hierarchy of information that is enabled at the port, node, or EX object level. This
information can then be viewed in aggregate or the details can be examined as needed.

The information contained in the results output will include:

¶ Packet captures which may be configured both on the port and the nodes. They may be filtered or
unfiltered. For example, a node may be configured to only capture packets for the protocols that are in
testing where the port may be configured to capture all communicated data sent to unknown nodes.

¶ Packet statistics which may be configured both on the port and the nodes. Different level of statistics may
be captured at different ports or nodes. For example, the port may be configured to provide statistics on
overall packet throughput (packets per sec, bits per second) and the nodes may be configured to provide
statistics on the protocols that are under test or the raw communicated data they are generating.

¶ Emulation statistics which are defined by the instance. For example, statistics on HTTP response codes
may be collected or HTTP responses for different methods. Emulation instances may provide additional
options (configuration) on the enabled statistics.

¶ Emulation outcomes which are defined by the EX object instance. For example, for DHCP the outcome
may include the leased IP address, lease time, and other returned options. For BGP it may be the
advertised route count. Emulation instances may provide additional options (configuration) on the
enabled outcomes.

8. Language Independence

Compliant APIs are by their nature language independent. Firstly, the APIs will be specified in an encoding and
transport independent format (i.e. tables in a document). Secondly, the semantics used will utilize the only
ubiquitous language features. Finally, the framework will only define encodings and transports which are
ubiquitous within the development community to allow for off the shelf tooling. The framework will not dictate
how to implement the API at the requestor or provider.

All of this allows for arbitrary language choices as implementers feel fit. Client libraries for specific implementation
languages (e.g. TCL or Perl) may be developed by providers, requestors, or 3rd parties. These libraries may provide
an easy to use bridge from the language of choice to the NTAPI protocol binding.

Encodings and transports are defined in the following sections along with the valid combinations (bindings) of the
two.

Encoding

The encoding is responsible for defining how the APIs (e.g. request or response) are represented when being
transported.

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 19 of 38

Initially, the framework defines two encoding methods, XML and JSON.

XML is selected as it is:

¶ Human readable

¶ Widely supported in multiple implementation languages

¶ Supports internationalization

¶ Operates within the selected transport

¶ Supports validation using a defined schema

JSON is selected as it is:

¶ Human readable

¶ Widely supported in multiple implementation languages

¶ High performance

¶ Supports internationalization

¶ Closely tied with RESTful APIs operating over HTTP

Additional encodings may be defined in the future.

XML
The XML encoding is defined by the W3C (http://www.w3.org/TR/2008/REC-xml-20081126). The following rules
are applicable to its usage:

¶ UTF-8 character encoding shall be used.

¶ Attributes shall not be used.

¶ All unknown elements and attributes shall be ignored.

The following is an example XML encoding.

<?xml version="1.0" encoding="UTF - 8"?>

<Body

 xmlns="http://ntaforum.org/2014/ntapi/body.xsd"

 xmlns:xsi="http://www.w3.org /2001/XMLSchema - instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <Entries>

 <Entry>

 <Name>argument1</Name>

 <Value>value1</Value>

 </Entry>

 <Entry>

 <Name>argument2</Name>

 <Value>value2a</Value>

 <Value>value2b</Value>

 </Entry>

 <Entry>

 <Name>group1</Name>

 <Entry>

 <Name>argument1</Name>

 <Value>value1</Value>

 </Entry>

 <Entry>

 <Name>argument2</Name>

 <Value>123</Value>

 </Entry>

 </Entry>

 </Entries>

</Body>

http://www.w3.org/TR/2008/REC-xml-20081126

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 20 of 38

JSON
JavaScript Object Notation (JSON) is described by RFC 4627.

The following rules are applicable to its usage:

¶ UTF-8 character encoding shall be used.

¶ All unknown fields shall be ignored.

The following is an example JSON encoding.

{

 "Entries": [

 {

 "Name": "argument1",

 "Value": "value1"

 },

 {

 "Name": "argument2",

 "Value": [

 "value2a",

 "value2b"

]

 },

 {

 "Name": "group1",

 "Entries": [

 {

 "Name": "argument1" ,

 "Value": "value1"

 },

 {

 "Name": "argument2",

 "Value": 123

 }

]

 }

]

Transport

The transport is responsible for the transmission of the API messages over the network. This includes connection
setup and maintenance.

Initially, the framework defines two transports, NTAF XMPP along with HTTP.

NTAF XMPP is selected as it is:

¶ A comprehensive transport with additional support for registration and discovery

¶ Widely supported in multiple implementation languages

¶ Leverages existing NTAF specifications and implementations

HTTP is selected as it is:

¶ Widely deployed and well understood

¶ Widely supported in multiple implementation languages

Additional transports may be defined in the future.

NTAF XMPP
NTAF XMPP is defined in NTAF TS-001 and TS-002. The following rules are applicable to its usage:

¶ The NTAF High Level API Action harness which aligns with the supported HTTP methods (see section 12)
shall be used.

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 21 of 38

¶ The response status code shall contain the action response status

¶ The mapping of method to NTAPI action shall be:

Method Action

POST Create when performed with URI that does not contain an object
instance (e.g. /ntaf/ntapi/dhcp/v0/DhcpClients)

GET Read

PUT Update when performed with URI that does contains an object
instance (e.g. /ntaf/ntapi/dhcp/v0/DhcpClients/1)

DELETE Delete

POST Control action specified with by action parameter in the query
string contained in the URI

HTTP
HTTP is defined per RFC 2616. The following rules are applicable to its usage:

¶ The supported version is 1.1.

¶ The following methods shall be supported:
o GET
o PUT
o POST
o DELETE

¶ Temporary redirection shall be supported.

¶ The response status code shall contain the action response status

¶ The Content-¢ȅǇŜ ƘŜŀŘŜǊ ǎƘŀƭƭ ŀƭǿŀȅǎ ōŜ ƛƴŎƭǳŘŜŘ ǿƛǘƘ ǘƘŜ ǾŀƭǳŜ ōŜƛƴƎ ŜƛǘƘŜǊ άŀǇǇƭƛŎŀǘƛƻƴκȄƳƭέ όǿƛǘƘƻǳǘ
the quotes) when transpoǊǘƛƴƎ ·a[ƻǊ άŀǇǇƭƛŎŀǘƛƻƴκjsonέ όǿƛǘƘƻǳǘ ǘƘŜ ǉǳƻǘŜǎύ ǿƘŜƴ ǘǊŀƴǎǇƻǊǘƛƴƎ W{hbΦ

¶ The mapping of method to NTAPI action shall be:

Method Action

POST Create when performed with URI that does not contain an object
instance (e.g. /ntaf/ntapi/dhcp/v0/DhcpClients)

GET Read

PUT Update when performed with URI that contains an object instance
(e.g. /ntaf/ntapi/dhcp/v0/DhcpClients/1)

DELETE Delete

POST Control action specified with by action parameter in the query
string contained in the URI

Bindings

The following are the combinations of encodings and transports that are supported by the framework.

¶ XML over NTAF XMPP

¶ XML over HTTP

¶ JSON over HTTP

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 22 of 38

9. Compliance

Individual NTAPI specifications will outline their requirements in order for an implementer to claim compliance.
These will include:

¶ API documentation

¶ Default values

¶ Encoding and transport bindings

¶ Supported use cases

¶ Reported results

The exact procedures for verifying compliance is left to be decided by the technical committee.

10. Use Cases

IPSec

Overview
In this use case, simulated CPEs create and maintain IPSec tunnels with a security gateway (SeGW) which
terminates the connections. The SeGW is the DUT. This use case may represent remote offices that are connecting
back into the headquarters of an enterprise.

Objective
The objective of the test is to validate the SeGW can accept and maintain IPSec tunnels for up to 1000 CPEs along
with route streams sourced from the tunnels to the connected network.

Topology
The topology of the test includes a single provider which has one port (port 0) connected to the public side of the
SeGW (accepting IPSec connections) and then another port (port 1) connected to the private side of the SeGW
(connecting to the enterprise network). Each CPE is represented by a node (node 1-1000) along with a node (node
0) to represent the enterprise network. The nodes representing the CPE have IPSec client emulation enabled and a
stream for sending data from the CPE to the destination node.

The following diagram depicts the provider and DUT setup.

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 23 of 38

Object Model
The following diagram depicts the object model with the destination and CPE nodes sharing a stream with bi-
directional data flowing. The CPE additionally have the IPSec client emulation.

NTAPI Sample Usage
The requestor executes the following highlight sequence to configure the test.

1. Create public port (/ports/0)
2. Create private port (/ports/1)
3. Create IPSec client emulation (/emulations/ ipsec/0)

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 24 of 38

4. Create traffic stream with bi-directional flow (/streams/0)
5. Create destination node (/nodes/0)

a. Associate traffic stream (/streams/0)
b. Associate private port (/ports/1)

6. Create 100 CPE node instances with template of
a. Associate IPSec client emulation (/emulations/ipsec/0)
b. Associate traffic stream (/streams/0)
c. Associate public port (/ports/0)

7. Create basic results (/results/0)
8. Start simulation
9. Wait for simulation to complete
10. Retrieve and view results
11. Validate all IPSec tunnels were created and the streams successfully passed the expected data

HNBAP

Overview
In this use case, simulated Home Node Bs (HNBs) register with a HNB gateway (HNB-GW) using the HNB
application part (HNBAP) signaling defined by 3GPP. Once the HNB is registered with the HNB-GW, it may register
user equipment (UEs) that it serving. The HNB-GW is the DUT. This use case represents a typical flow between a
HNB and a HNB-GW in a UMTS network.

Objective
The objective of the test is to validate the HNB-GW can accept 10,000 HNBs that register themselves and 2 UEs.
This would represent a situation where there has been an outage and the HNBs are reconnecting.

Topology
The topology of the test includes a single provider which has one port (port 0) connected to the HNB-GW. Each
HNB is represented by a node (node 1-10000) with have HNBAP client emulation enabled. The HNBAP emulation is
configured to perform a HNB register followed by 2 UE registers.

The following diagram depicts the provider and DUT setup.

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 25 of 38

Object Model
The following diagram depicts the node object model with the HNB nodes having HNBAP emulation.

NTAPI Sample Usage
The requestor executes the following highlight sequence to configure the test.

1. Create HNB-GW port (/ports/0)
2. Create HNBAP emulation (/emulations/hnbap/0)

a. HNB register
b. 2 UE registers

3. Create 10,000 HNB node instances with template of
a. Associate HNBAP emulation (/emulations/hnbap/0)
b. Associate HNB-GW port (/ports/0)

4. Create basic results (/results/0)
5. Start simulation
6. Wait for simulation to complete
7. Retrieve and view results
8. Validate all HNBs and UEs were registered

Automation API Framework WT-0065 Revision 1

August 2014 © Network Test Automation Forum. All rights reserved. 26 of 38

BGP Maximum Neighbors

Overview
This use case represents neighbor routers communicating routes to one another using BGP protocol. Typically a
BGP router is connected to several neighbors. It must track advertised routes while simultaneously managing all
data it receives.

Objective
This test measures the maximum number of BGP sessions a DUT can maintain while successfully routing data plane
traffic.

Topology
Below is the actual topology used for this use case. The basic configuration is that a DUT (router) is connected to a
test device. The DUT is shown with two interfaces. Those interfaces are connected to two test device ports, with
one DUT interface connected to the test device left port and the other DUT interface connected to the test device
right port.

Inside the test device network elements are simulated. The simulated objects consist of four nodes. The neighbors
(node 0 and node 2) each represent one or more neighbor routers connected to the DUT. The endpoints (node 1
and node 3) each represent one or more network entities which can send and receive data plane traffic. These
endpoints represent entities which neighbor routers advertise as known routes.

